System Engineering Status GLAST PSR 02 July 2003

J.Leibee

RFA Status

Total RFAs (Spacecraft PDR/LAT CDR/MPDR) Status

- 108 Total, 0 Closed
- Status Tracking Matrix to be developed

SC PDR & SC FSW PDR

- All RFAs assigned with due dates
- 43 Total, 0 Closed, 10 Responses to GPO Expected this week
- FSW: 14 Total, 0 Closed, 1 Response to GPO Expected this week

LAT CDR

- All RFAs assigned to SLAC personnel
- 37 Total

MPDR

- RFAs assigned
- 14 Total, 0 Closed

GLAST Project CCR Status

- One CCB held in June
 - 11 CCRs Brought to the Board
 - 7 Approved, 3 Deferred to Incorporate Comments, 1 Withdrawn
- Next CCB scheduled for July 1
 - 13 CCRs to be dispositioned, including 2 from last CCB
- 15 additional CCRs in the system for review
- Continuous Risk Management Plan and SEMP in process of being updated
 - Expect to board at next CCB on 10 July

Requirements Status

Total Number of TBXs in Project Documents - 5

- MSS: 2, SPS: 2, LAT-SC IRD: 1, GBM-SC IRD: 0
 - 1 TBR each in MSS and SPS that will remain (SC Outages)
 - 3.1.4.2.2.1 Spacecraft Outages: The total time spent in outages that prevent acquisition of science data, i.e., those that result in safe mode, shall not exceed 1 % (TBR) of the operational life of the mission.
 - SPS3.1.6 Availability: The total time spent in spacecraft outages that prevent acquisition of science data, i.e., those
 that result in safe mode, shall not exceed 1 % (TBR) of the operational life of the mission.
 - CCR to be written to remove TBD in Ground System section of MSS
 - CCR reviewed yesterday to remove TBR in MSS
 - TBR in LAT IRD for 75 W Solar Array backload to be negotiated (both sides meet rqmt, LAT would like relief to provide additional margin)

Total Number of TBXs in ICDs - 51

- LAT-SC ICD: 20, GBM-SC ICD: 31
- Generating a closure plan and date for each of these

Mass Budget

		mass (kg)						
		Allocation	Margin	%				
•	Dry SC	1169	880	289	33			
•	SC including propellant	1530	1240	290	23			
•	LAT	3000	2680	320	12			
•	GBM	<u>97</u>	84	<u>13</u>	<u>15</u>			
•	Observatory mass	4627	4004	623	16			

- 10 kg decrease in spacecraft estimate
- Delta II Heavy throw weight to 575 km with cg at 1.37 m = 4627 kg

Power Budget

Orbit Average Power (Watts)

	Allocation	Estimate	Margin	%
Spacecraft	985	801	184	23
LAT	650	573	77	13
GBM	<u>65</u>	<u>55</u>	<u>10</u>	<u>18</u>
Observatory total	1700	1429	271	19

• 10 Watt decrease in estimated spacecraft power consumption

Study Status

#	Study	Status	Closure Plan
1	TDRSS SSA Return 1,2,4,8 kbps Capability	CCR drafted by GPO/Spectrum to state that positive margin for 1,2,4 kbps is a requirement; not for 8 kbps which will be verified via ground testing	CCR submitted - 7/2
2	Observatory Switch and Repoint Capability (10 switches / 5 repoints per orbit)	GPO preparing separate requirements for command buffer sizing and slew capability; Number of slews per orbit limited by RW thermal performance; Spectrum to perform thermal analysis, slew definitions and provide adjustable slew parameters (rate, acceleration) for on-orbit ops	Spectrum to complete slew definitions and thermal analysis - 7/14 Review with SWG - 7/21 Submit CCR - 7/28
3	Observatory Slew Performance	CCR drafted by GPO/Spectrum to revise requirement to account for slew performance under 3 RW control; Slew requirement of 75 deg in 10 min met 100% of time under 4 RW control, 79% under 3 RW control	Draft CCR - 7/1 Review with SWG - 7/21 Submit CCR - 7/28
4	Reed-Solomon Encoding on TDRSS Link	Draft CCR wording circulating within project systems engineering office. Spectrum has reviewed and has small impact – will provide impact once the CCR verbiage is finalized by GPO.	Finalize verbiage of CCR – 7/2 Enter CCR in system – 7/3 Approve CCR – next CCB. (asap – out of board potentially)
5	51 kbps HK Telemetry Rate	Rationale for 51 vs. 32 kbps HK telemetry presented at monthly 6/26 by SAI. Tailored and reviewed by GPO on 6/30. Tuning for presentation to GPO/PM planned for this week.	Presentation of approach and plan to GPO to be scheduled - 7/8.
6	7 sec Latency	Clarification and understanding of the latency allocations within the system between GPO and Spectrum. Spectrum to provide current allocation breakdown.	No timetable

Ku-band Study Summary

Primary Features

- 75 Mbps return link rate for SSR downlink (65 mbps science/10 mbps housekeeping)
- Real-time housekeeping data
- Non-deployable gimbaled antenna
- Approximately 2-seven minute contacts per orbit due to geometric constraints
 - · 2-four and one-half minute contacts per day to downlink SSR data

Most significant design changes

- New High Speed Down Link (HSDL) Board to Interface to X-band and Ku-band Transmitter
- Modify Baseline UDL Board to:
 - Provide LVDS Interface on SSR HK Playback

Most significant impacts/issues

- Schedule: 5 months to spacecraft I&T (C&DH redesign); 20 additional days for observatory I&T (mitigation possible for both)
- Ops: Limited visibility results in impacts on scheduling TDRSS; autonomous repointing/TOO could result in missed contacts
- Impact of possible stuck antenna (plume impingement/thermal)

Forward Plan

- Develop mitigation plans (e.g. reducing downlink rate to 40 Mbps simplifies C&DH design)
- Complete thermal analysis and develop NTE price

Observatory STOP Analysis Plans

•Cycle 1: (6/16 - 7/30) Start with PDR models

- ✓ 6/13/03 Spectrum Special Study Task 5 turn on
- ✓ 6/20/03 Lou identify thermal load cases and get them reviewed by Jeff Wang and his branch
 - LAT requested TIM next week to resolve any issues
- 7/30/03 Spectrum complete reduced set of analysis
 - Gradient cases (x, y, z, and specific cases of interest)
 - Greatest value of this cycle
 - Independent of thermal model
 - Can compare these results with SLAC/Lockheed's current gradient estimates
 - 4 thermal load cases
- 1 Mechanical and 2 Thermal model TIMs at SLAC during Cycles 1 and 2

•Cycle 2: (8/1 - 9/30) Use updated CDR LAT model

- Spectrum Special Study Task 5
- X 6/27/03 SLAC deliver updated FEM and thermal model to GSFC
- 7/30/03 GSFC deliver LAT FEM and thermal model to Spectrum
- 9/30/03 Spectrum complete reduced set of analysis (same as Cycle 1)

•Cycle 3: Use final CDR LAT model

- 9/1/03 (TBR) SLAC deliver post-CDR FEM and thermal model to GSFC
- 10/1/03 (TBR) GSFC deliver FEM and thermal model to Spectrum
- 1/10/04 Spectrum complete full set of analysis (same as Cycles 1 & 2, plus transient cases)

•Cycle 4: Use T/V correlated LAT model and TBD SC model

- (need to optimize phasing in terms of SC optical bench testing, SC CDR design completion, SC bus testing etc.)
- •Cycle 5: Use T/V correlated observatory model

ORSAT Analysis Result Summary To Date

	Items o	Items of Interest		JSC:Oct'01 (1), (2) 75% mass modeled		GSFC: Apr'03 86% mass modeled		JSC: June'03 (4)	
	Item	Material	#	DCA (m ²)	KE (J)	DCA (m ²)	KE (J)	DCA (m ²)	KE (J)
Spacecraft	Int. Elec. Module (IEM)	Aluminum	2			0.9	>> 15		
	Pwr Dist. Unit (PDU)	Aluminum	1			1.0	>> 15		
	Propellant Tank	Ti Alloy	1			2.3	4950.0		
LAT	ACD – Top Shield (3)	Nextel	Variable	4.8	Low	5.74 (1)	2.2		
	ACD – Side Shield (3)	Nextel	Variable	Not used	Low	3:80-(1)	1.3		
	Tracker Tray Closeout	Carbon-Carbon	1216	547.2	Low	595.8		595.8	< 15
	Tracker Thin Foil	Tungsten	3072	1348.6	Low	1443.8	0.4	1443.8	< 15
	Tracker Thick Foil	Tungsten	1024	449.5	Low	450.6	12.88	450.6	24.1
	Lat Grid	Aluminum	1	0.0	High	3.1	58,700		
	Total DCA (No KE Threshold)		2350		2502.8				
	Total DCA (with 15J KE Threshold)			NA		7.3			

Notes: (1)Spacecraft not included in original study, (2) report indicated only that KE for certain components was very small

⁽³⁾ ACD shield modeled as single piece of area equal to top layer in Oct 01, modeled as top layer and 4 side layers in Apr '03 and June '03'

⁽⁴⁾ June '03 ORSAT 5.8 includes lower drag for sub-sonic speeds which has impact on KE computation as seen in thick tracker foil

 $[\]bullet JSC$ runs will be final determination: full 100% observatory model provided on 7/1

[•]Final results expected week of July 14th

Upcoming Events

- Regularly scheduled meetings-System Engineering Staff (every Monday); ISET (every Tuesday); Subsystem Status (every Wednesday)
- STOP Analysis Telecon-bi-weekly (minimum)
- Risk Management Practices-03 July
- CCB-10 July
- Integrated Modeling Seminar-15 July
- GSFC Encryption Policy Formulation-TBD
- GBM DPU CDR-05/06 August